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Munchen 2, Federal Republic of Germany 

Received 21 April 1989, in final form 4 June 1990 

Abstract. A method is described, with which exactly solvable, one-dimensional, stationary 
Schrodinger equations can be derived from solved differential equations. The procedure 
is illustrated by the example of a Schrodinger equation for a potential well with a barrier 
of the form 

tanh z 
q*,tanh2z+q^,- cosh z +io). 

The eigenvalues and eigenfunctions of this potential are calculated exactly. The results are 
explicit, analytical expressions in closed form for the whole eigenvalue spectrum as well 
as for all the eigenfunctions. 

1. Introduction 

For a long time exactly solvable Schrodinger equations have been the object of many 
investigations. An exact solution can usually be found only for special, simple poten- 
tials. In this paper a method is described, with which the Schrodinger equation can 
be solved exactly for relatively general potentials. The potentials may contain up to 
11 arbitrary algebraic parameters. 

Many exactly solvable potentials are polynomials or hyperbolic functions of the 
spatial coordinate. A potential well with finite walls, represented by a polynomial of 
second degree of tanh z ( z  is a dimensionless spatial coordinate), belongs to the 
hyperbolic case. This potential was discussed in detail by Morse and Feshbach [l]. 
For this well the eigenvalues and eigenfunctions are given in closed form. Compared 
with the harmonic oscillator this potential well has the virtue that it has a discrete, as 
well as a continuous, spectrum because of its finite depth. The great flexibility of this 
potential in relation to its simplicity was the reason for the careful investigation of 
these potentials, which are functions of tanh z. 

In section 2 a rational function of tanh z is permitted as potential. The Schrodinger 
equation with this potential is transformed by the same transformation with which the 
simple well was solved in [l]. The resulting differential equation is exactly solved by 
power series. The transformed Schrodinger equation has only regular singularities, if 
potentials with unfavourably lying poles are excluded. In this case the eigenvalue 
condition can be derived exactly. 

Unfortunately it can only be solved for special cases of the general potential. In 
order to continue with the general calculations, the potential is restricted and the 
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transformation is generalised. In the first step only symmetric potentials are considered. 
These are rational functions in tanh2 z. A special case of these potentials was discussed 
by Hud6k and Trlifaj [7]. The Schrodinger equation is transformed by a transformation 
that takes advantage of the symmetry. The resulting differential equation has only 
regular singularities like that in the general case. The exact solutions of this differential 
equation are power series that are simpler than those of the general potential. The 
decisive change occurs in the eigenvalue condition. For symmetric potentials it is 
divided into two conditions. One of them produces the eigenvalues with even quantum 
number and the other the eigenvalues with odd quantum number. Unfortunately these 
eigenvalue conditions could not be solved in general, either. Therefore, in a second 
step, the general potential is further specialised. 

It is not obvious how to restrict the general potential and how to guarantee 
simultaneously that the Schrodinger equation is exactly solvable. Therefore the method 
is slightly modified. The Schrodinger equation with a general potential is transformed 
generally. Explicit transformations and the appropriate potentials then follow from 
the requirement that the transformed differential equation is exactly solvable. Of course 
each of these potentials contains arbitrary algebraic parameters so that it represents a 
whole family of potentials. Nevertheless they are referred to as one potential. 

Due to the restriction on these special potentials it is possible to solve the Schrodin- 
ger equation exactly. For all the potentials, which have been investigated until now, 
the eigenvalue condition can be solved for the eigenvalues explicitly and analytically. 
All eigenfunctions are given in closed form. Twenty four potentials are now known. 
In addition, all these potentials can be treated with the general method. The eigenvalues 
are, therefore, exact solutions of the general eigenvalue condition. 

In section 2 the general method is described using as a potential a rational function 
of tanh z. The calculations with the special potentials are, of course, more complicated 
than those with the general potential, because they result in explicit solutions. Therefore, 
it is suitable to solve the Schrodinger equation in two steps. The transformation, and 
thus the method of solution, is found and the appropriate potential is determined first 
(section 3). Afterwards the solution is determined explicitly. In section 4 the procedure 
is demonstrated for a potential well with a barrier. 

2. Solution of the Schrodinger equation by series 

2.1. General potential 

2.1.1. Solution of the Schrodinger equation. In this section the general solution of the 
Schrodinger equation with a general potential is determined. The method of solution 
is a generalisation of the method used by Morse and Feschbach to solve the Schrodinger 
equation with a potential well with finite walls [l]. The Schrodinger equation is 
transformed into a differential equation with regular singularities, the exact solutions 
of which are power series. 

A rational function of tanh z is chosen as a potential?: 
X uz(z) z = - dimensionless spatial coordinate 
d 

V(z)=- 
U N ( Z )  

Uz(z)=qz, tanh"z+qz,-, tanh"-' z +  . . .+qzo (2.1) 
UN(Z) = q N m  tanhm z + q N m - ]  tanhm-' z +. . . + q N O .  

t The subscript notation Z and N denotes Zahler (numerator), Nenner (denominator) respectively. 
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Up to now the zeros of U..,(z) are arbitrary. Hence, (2.1) also contains potentials with 
poles. The potential well solved by Morse and Feshbach [ l ]  

U,&) = qz2 tanh2 z + qzl tanh z + qzo (2.2) 

is a special case of (2.1). The dimensionless Schrodinger equation 

d2P -+ [ E  - VU( z) ]p (  z )  = 0 
dz2 

2m d2 
h2 

2m d2 
h2 

U=- U, dimensionless potential depth 

E = -  E dimensionless eigenvalue 

(2.3) 

is transformed by 

z = tanh-’( 1 - 2u) (2.4) 

in a differential equation with rational coefficients. Its normal form is given by 

The transformation (2.4) maps the real axis into the interval [0, 11. In particular, z = +CO 

and z=-m are transformed into u=O and u = 1, respectively. In (2.3) 11 is factored 
out, because the physical quantities (mass m and so on) are contained only in this 
parameter. U (  U )  is the transformed potential 

U ( u )  = UZ(u)/ u N ( u )  

Its coefficients are defined by 

for A = Z  
for A =  N. 

(2.7) 

Differential equations with rational coefficients may often be solved by power series. 
The power series expansion is prepared by the transformation [4] 

(2.8) q ( u )  ul/*+AI(1- u ) 1 ’ 2 + * 2 y ( u )  

whereby 

A 1 = ;[ U U (  z = +CO) - 

A 2  = $ [ V U (  z = -00)- E]’”. 
(2.9) 
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The differential equation (2.5) is transformed by (2.8) into 

d2Y dY 
U( 1 - U )  U ,  (U) 2+ ( b ,  U + bo) UN ( U )  - du du 

whereby 

bo = 2Al+ 1 

bl= -2(A1 + A , +  1) 

and with the potential terms 

(2.10) 

(2.11) 

(2.12) 

In (2.12) all divisions can be worked out without there being remainder terms. Therefore, 
all expressions are polynomials. The solution of (2.10) is connected with the solution 
of the Schrodinger equation (2.3) by 

q ( z )  = u y 1  -u)A2y(u) u= i ( l - t anhz ) .  (2.13) 

The factors in front of y(u)  represent the asymptotic behaviour of the solution. It is 
remarkable that an interchange of the transformations (2.4) and (2.8) complicates the 
calculations considerably. 

The differential equation (2.10) has singularities at 0, 1 and at the zeros of the 
denominator of the transformed potential. In general, series expansions can be worked 
out without any difficulties only about regular singular points [4]. In section 2.1.2 the 
boundary conditions are used to determine the eigenvalue condition. Therefore an 
expansion about 0 or 1 (corresponding to z = +a) is suitable. The points 0 and 1 are 
regular, if the potential is bounded at infinity 

V(Z = *a)<Co .  (2.14) 
Condition (2.14) is assumed in the following. 

The solution of (2.10) is expanded about 0: 

y(u) = C , , P , ( U ) +  cp2u-2A'P2(u) U E [O, r[ 
(2.15) 

r=min{l,Iukl(U,(uk)=0} 

where PI and P2 are power series. Their radius of convergence is the minimal distance 
to the next singularity. The series are represented by 

n 

P l ( u ) =  RjuJ 
J = o  

00 

P2(u) = i j U j  
i = O  

(2.16) 

(2.17) 
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The coefficients of the series are defined by the recurrence relation 

( j + l ) ( j A l + B o ) R j + I + [ j ( j - l ) A , + j B , + C ~ I R j  

+. . . + [ ( j - m ) ( j - m - l ) A m + ~ + ( j - m ) B m + ~ + C m I R j - ,  

+Cm+lR,...m-l+. . .+CPRj-,=O (2.18) 

Rj=Rj(tLg, ~ 1 )  R,=Oforj>O 

Ro= 1 p = max{ m, n - 2) 

(2.19) 

(2.20) 

(2.21) 

The parameters pj determine which series is defined by (2.18) 

Rj=Rj(po, PI) po= l -b ,  p ]  = 1 + bo + b, (2.22) 

gj=Rj(-po,  ~ 1 )  po=l -bo  p 1 = 1 + bo + bl . (2.23) 

The general solution of the Schrodinger equation with the potential (2.1) and the 
restriction (2.14) is given by 

(2.24) 

The equations (2.16) to (2.23) show how the parameters of the solution (2.24) depend 
on the parameters of the potential (2.1). 

2.1.2. Eigenvalue condition. In this section the eigenvalue condition is derived exactly 
from the general solution of the Schrodinger equation (2.24). The potential has to be 
restricted at first to guarantee that all singularities of the differential equation (2.10) 
in the unit circle are regular. Then the solution (2.24) is continued to apply the boundary 
conditions. The eigenvalue condition is a consequence of the requirement that the 
solution has to vanish at infinity. 

The general solution (2.24) was expanded about U = 0 ( z  = +CO). Hence the boundary 
condition at z=+m can be applied directly to (2.24). In the asymptotic representation 

q ( z ) - +  C P l U A I +  Cp*U-h '  u + o  (2.25) 

the second term diverges so that 

cp2 = 0. (2.26) 
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The boundary condition at U = 0 cancels one of the two linearly independent solutions. 
The other boundary condition occurs at U = 1 ( z  = -00). From the equations (2.24) 
and (2.15) it follows that this point does not lie in the circle of convergence of the 
series in the solution (2.24). Therefore, a representation of the series PI that is defined 
at U = 1 has to be found. This is possible by the help of the analytic continuation of 
the series P, [6]. 

The differential equation must not have any irregular singularity in the unit circle 
in order to continue P, to U = 1 .  This is the case, if the denominator of the transformed 
potential has only zeros at most of second order in the unit circle. In future this is 
assumed 

(2.27) 

It has to be pointed out that a potential (2.1) that is restricted by (2.27) and (2.14) 
may still have poles. Under these assumptions the series P, can be continued to U = 1.  

Condition (2.27) is a commensurate, but not a necessary, condition. If the sin- 
gularities lie at convenient positions, PI can be continued under essentially weaker 
assumptions. In some cases even irregular singularities may lie in the unit circle. These 
cases cannot be discussed in general so that they are excluded by (2.27). 

To simplify the future calculations, it is assumed that U , ( u )  has no singularity in 
the unit circle except at U = 0. Then the analytic continuation of P, is given by 

(2.28) 
whereby CY and p are unknown coefficients. P3 and P4 are power series expanded about 
u = l  

P, ( U )  = ap3( U )  + p ( 1 - U ) - “ 2 ~ ~ (  U )  U E IO, 11 

P3(u)=  i j ( l - u ) j  io= 1 

P4(u)=  Rj( l -u ) j  R o =  1 .  

j = O  

W 

j = O  

(2.29) 

(2.30) 

Considering (2.26) the solution of the Schrodinger equation is given by 

cp ( 2)  = cp , U ( 1 - U ) * 2 [  CY P3 ( U ) + p ( 1 - U )  - 2h2 P4( U )  ] 
The asymptotic form of (2.31) is 

U €10, 11. (2.31) 

cp(z) + cpl[CY( 1 - U)”+ p(  1 - u)-A2] u + l .  (2.32) 
The second term diverges and the eigenvalue condition is given by 

@ ( E )  = O .  (2.33) 
To determine the unknown coefficient p, a result in a paper of Schafke and Schmidt 
[2] is used. They prove that p can be expressed by the coefficients of the series PI 

(2.34) 

The eigenvalue condition of the potential (2.1) with the restriction (2.14) and under 
the assumption that U,  ( U )  has no zero in the unit circle is given by 

(2.35) 
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For the sake of completeness the coefficient CY is also given, 
r( j+l)  - 

CY =I+,) lim 4 
j -+m r( j + p l )  

(2.36) 

where 
Rj = R j ( ~ o ,  - P I )  pLg=I-bO pl = 1 + bo+ b,  . (2.37) 

A similar eigenvalue condition can be derived, if U, ( U )  satisfies only condition 
(2.27). Then an equation similar to (2.28) has to be used repeatedly. Starting at u = 0, 
the series is continued until u = 1 lies in the circle of convergence. Obviously the 
calculations proceed as described above. The coefficients of (2.32), however, are given 
by more complicated expressions. Thus, it is possible to derive a similar eigenvalue 
condition as (2.35) for the potential (2.1) under the assumptions (2.14) and (2.27). 

2.2. Symmetric potential 

2.2.1. Solution of the Schrodinger equation. The eigenvalue condition (2.35) cannot be 
solved in general. It is known that further results can be derived if the potential 
possesses special properties. Therefore only symmetric potentials are discussed in this 
section. To use the properties of these specialised potentials, the transformation (2.4) 
is generalised. The new transformation makes use of the symmetry. The method of 
solution is essentially the same as in section 2.1.1. The main difference is that the new 
transformation divides the interval into two parts. The most important result is that 
the recurrence relation, which defines the solution of the Schrodinger equation, contains 
only half as many terms as in the general case, if the polynomials of the potential are 
of the same degree. This is an essential simplification. 

The symmetric potential 

Usz(z)=qsz2,  tanh2"z+qsz2,-2tanh2"-2z+. .  .+qszo (2.38) 
U S N ( ~ ) = q S N 2 m  tanh2mz+qsN2m-2tanh2m-2 z + .  , .+qsNO 

contains only even powers of tanh z. A transformation taking this into account should 
depend on the square root of a linear function of U. Hence, the transformation 

for Z S O  
1 for z 3 0  

z = tanh-' S ( 1 -  u ) " ~  (2.39) 

is used. This transformation maps the positive semiaxis as well as the negative semiaxis 
into the interval [0, I]. In particular z = kc0 is mapped into u=O. The ambiguity of S 
at the origin is necessary to close both intervals. The transformation introduces a 
division of the interval so that two transformed differential equations correspond to 
the Schrodinger equation. The Schrodinger equation is transformed by (2.39) into 

U 2 ( 1 - u ) 2 _ i + $ { ~ U 2 + ( 1 - U ) [ 1 + E - v U S ( u ) ] } ~ ( U ) = 0  d2Q 
du (2.40) 
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Its coefficients are defined by 
P .  

OSAk=(-l)k ( ; l k ) q A j  AE (2, NI 
j = k  

(2.42) 
for A = Z  
for A =  N. 

The degree of the polynomials Usz(u) and U s N ( u )  is half as large as in (2.6). The 
parameter 6 does not occur in the transformed Schrodinger equation (2.40). Therefore 
(2.40) is valid in both partial intervals and it is sufficient to solve (2.40). 

Analogous to (2.8), (2.40) is transformed by 

c p ( u )  = U 1 / 2 + A s ,  (1 - u)”4y( U )  

Asl = $ [ u U ~ ( Z  = * t a 3 ) - - ~ ] ” ~  

into the differential equation 

whereby 

bso = 2Asl + 1 b S l =  -(2Asl+;)= -(bso+i) 

(2.43) 

(2.44) 

(2.46) 

(2.47) 

The expressions (2.47) are polynomials. The solutions y and cp are connected by 

cp(z) = u ^ s y ( u )  U = 1 - tanh2 z. (2.48) 

Due to the symmetry of the potential, the asymptotic behaviour of the solution of the 
Schrodinger equation is contained in the power of U. Under the transformation (2.39) 
the point U = 1 is not a marginal point. Hence, the power of 1 - U is missing in (2.48) 
compared with (2.13). 

The differential equation (2.45) can be solved by a power series expansion, if 0 
and 1 are regular singularities. This is the case, if Us( z )  is bounded at infinity and has 
a pole at most of second order at z = 0: 

U,(z  = *co)<co 
(2.49) 

With symmetric potentials, there is an additional condition on the potential at z = 0. 
The point z = 0 is the link between both partial intervals. I f  the potential has a pole 
satisfying (2.491, a further transformation has to be worked out before expanding the 
solution. By the help of suitable substitutions the transformed differential equation 
can also be put into the form (2.45). Therefore, it can be assumed without loss of 
generality that Us ( U )  has no zero at U = 1 .  The solution is expanded about U = 0: 

Us N ( z )  = tanhZk z Os N ( z )  with O s ~ ( 0 )  # O A o C  k <  1. 

Y ( U )  = ~ p s l ~ s I ~ ~ ~ + ~ p s 2 ~ - 2 A ~ ~ ~ s z ( ~ ~  U €2 EO, r[ 
(2.50) 

r=min{l,  I u k l l  U s N ( u k ) = o } .  
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Here Psl and Ps2 are power series, 

00 

& ( U ) =  c Rsp' 
J =o 

X 

& ( U )  = 1 GUJ. 
,=0 

(2.51) 

(2.52) 

Their coefficients are defined by the recurrence relation 

whereby 

(2.54) 

(2 .55)  

(2.56) 

Rsj = Rsj (Pso ,  P S ~ )  Pso = 1 - bso Psi= t (2.57) 

Rsj = RSj(-PSO, P S I )  Pso = 1 - bso Psl=4. (2.58) 
A 

Obviously (2 .53)  contains only half as many terms compared with (2.18). 

and the restriction (2.49) is given by 
The general exact solution of the Schrodinger equation with the potential (2.38) 

(2.59) 

2.2.2. Eigenvalue condition. In this section the eigenvalue condition is exactly derived 
from the general solution (2.59) of the Schrodinger equation with a symmetric potential. 
As in the general case, the potential (2.38) has to be restricted so that the differential 
equation (2.45) has only regular singularities in the unit circle. Due to the symmetry 
of the potential, both boundary conditions are satisfied at the same time. The eigenvalue 
condition follows from fitting together the two partial solutions at z = 0. This results 
in two eigenvalue conditions. One of them produces the eigenvalues with even quantum 
numbers and the other those with odd quantum numbers. 
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The general solution (2.59) is expanded about U = 0. On account of the transforma- 
tion (2.39), this point corresponds to z = *W. Therefore, both boundary conditions 
can be considered at the same time. In the asymptotic representation 

cp(z) + C p S 1 U A S '  + cps2u-*= U + O  (2.60) 

the second term diverges, and therefore 

cpsz  = 0. (2.61) 

The transformation (2.39) introduces a division of the interval. The solution of the 
Schrodinger equation, therefore, consists of two parts 

cp+(z) = C p S 1 + U h S I P S 1 ( 4  2 2 0  

cp-(z) = c p s l ~ U " ~ P s l ( U )  z s o  (2.62) 

U = 1 - tanh' z U E [O,  r [ .  

The wavefunction has to be continuously differentiable at z = 0 (U = 1). To fit 
together both partial solutions, they first have to be continued to U = 1. This is possible, 
if Us N ( ~ )  has only zeros at most of second order in the unit circle ((2.27)). As in the 
general case it is assumed for the sake of simplicity that U S N ( u )  has no zeros in the 
unit circle. Then P,,(u) can be directly continued to U = 1: 

Ps , (U)  = a,Ps,(u)+Ps(l  - U ) 1 ' 2 P s 4 ( U )  U E IO, 11 (2.63) 

whereby 

(2.64) 

(2.65) 

The series PSl is continued to U = 1. Then the solution of the Schrodinger equation, 
considering (2.61), is given by 

U E IO, 11. (2.66) 

The asymptotic representations of both partial solutions are a consequence of (2.66) 

d z )  = C p s 1 U " ~ [ ~ s ~ s 3 ( U )  +Ps(l  - 4 ' 2 P s 4 ( 4 1  

The derivative of (2.66) is 

_-  dq - - 2 C p s 1  SUASI  1 - U),'*[ asPS,( U )  + ps( 1 - U)"2Ps4( U)] dz 

d 
du 4 1 -  - Ps3 - f p , P s 4 ( u )  + p s ( l  - U )  

(2.67) 

(2.68) 

Equation (2.68) depends on 6. Only at this place is the division of the interval explicitly 
expressed. The limits of the derivatives are given by 

(2.69) 
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Thus the conditions of continuity are given by 

cps1+as = C p s l - f f s  (2.70) 

C,S l+PS  = - c , s * - P s .  (2.71) 

To solve this system, the cases as  = 0 and as  # 0 have to be distinguished. as  and 
P s  must not vanish simultaneously, since this would be a violation of the linear 
independence of the series Psl and Psz, because of (2.66) and (2.59). Hence, the 
eigenvalue condition follows: 

(2.72) 

(2.73) 

There are two eigenvalue conditions with symmetric potentials. One of them 
produces the even eigenvalues and the other the odd ones. By (2.72) and (2.73), the 
symmetry of the eigenfunctions is also obvious. As in the general case, as and O s  can 
be expressed by the coefficients of the series PSI : 

(2.74) 

(2.75) 

3. Solution of the Schrodinger equation by transformation 

3.1. General transformation of the Schrodinger equation 

In this section Schrodinger equations with the potential (2.1) are investigated, which 
are exactly solvable. To achieve this, the potential has to be restricted in a suitable 
way. Since it is not obvious how the potential is connected with the requirement of 
exact solvability, a general function of the spatial coordinate is used as a potential. 
Then the Schrodinger equation with this potential is transformed by a similar general 
transformation. The differential equation so derived is to be exactly solvable. From 
this requirement special transformations and the appropriate potentials can be calcu- 
lated explicitly. 

The dimensionless Schrodinger equation 

& + [ E  - U ( z ) ] p ( z )  = o  
d z 2  

is transformed by 

z = g ( x ) .  (3.2) 
The normal form of the resulting differential equation is as follows: s+[57--(-) 1 g“’ 3 g” + [ E -  U ( x ) l g ” ] y ( x ) = o .  

4 g’ 
This differential equation is to be solvable exactly, that is the invariant of (3.3) 

(3.3) 

I ( x ) = - y - -  + [ & - U ( X ) ] g ’ *  
2 g  g”’ 4 (”02 g (3.4) 
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has to be identical with that of a solved differential equation. In principle each 
differential equation that contains at least one algebraic parameter (eigenvalue), is 
permitted for this purpose. To simplify the further calculations, only such differential 
equations are considered that most probably produce usable Schrodinger equations. 
Furthermore, the solved differential equation should contain as many algebraic param- 
eters as possible. Therefore, the hypergeometric differential equation (potential ( 2 . 2 ) ) ,  
Whittaker's differential equation [4] and the differential equation of the harmonic 
oscillator are considered. The formal similarities of these differential equations permit 
a common treatment. 

Requiring that (3.4) is identical with the invariant of these differential equations 
we have 

Z ( X )  = J'r(x)/Q:(x) (3.5) 

where P2 and Q3 are polynomials of x of second and third degree, respectively, with 
arbitrary coefficients. The invariant (3.5) contains that of the hypergeometric differential 
equation. A certain similarity of this method with Sommerfeld's polynomial method 
[3] follows from this property. The coefficients of Q3 are connected to the solvable 
differential equation by 

Q 3 ( X )  = 43x3 + 42x2+ q1x + 40 (3.6) 

with the following special cases: 
(i) hypergeometric differential equation transformed with 1( ax + b )  

q 3  f 0 

(ii) hypergeometric differential equation 

4 3 = 0  q2+0 

(iii) Whittaker's differential equation 

q 3  = 4 2 = 0  q , + o  

(iv) harmonic oscillator 

q3 = q2 = 41 = 0 40 + 0. 

The potential can be determined from (3.5). It is given by 

- (3.7) 

In (3.7) g(x) and U ( x )  are arbitrary functions. In particular, it is possible to calculate 
U for each g so that (3.5) is satisfied and therefore the appropriate differential equation 
is exactly solvable. The other case, in which the potential U is given and a transforma- 
tion g is derived from (3.7), would be more interesting. Unfortunately, (3.7) is an 
unsolvable differential equation for g ( x ) .  

The left-hand side of equation (3 .7)  is a difference of a constant (eigenvalue) and 
a function (potential) that does not depend on this constant. Therefore, the transforma- 
tion g has to be chosen in such a way that the right-hand side of (3.7) is of the same 
form. Due to the complicated dependence of (3.7) on g, it is not easy to find suitable 
transformations. If, nevertheless, a transformation is found so that one of its parameters 



Exactly solvable Schrodinger equations 4157 

produces the eigenvalue, a new problem occurs. Equation (3.7) represents the trans- 
formed potential U ( x ) .  To determine V ( z ) ,  x has to be eliminated by (3.2). Hence 
U (  z) becomes dependent on the eigenvalue, because g should produce the eigenvalue. 

There is an alternative if the calculations are not worked out as general as possible. 
Then the requirement is that P2 is to produce the eigenvalue. Since the parameters of 
P2 occur nowhere else in the expression (3.7), it is guaranteed that the remainder does 
not depend on the eigenvalue. Then the backward transformation does not depend on 
the eigenvalue either. This requirement is satisfied, if the relation 

1 1 (3.8) 

holds. R2 is a polynomial of second degree in x. In this case after working out the 
polynomial division P2/ R2 the first term in (3.7) produces a constant, which contains 
a parameter of P 2 .  The differential equation (3.8) can be solved for g, 

(3.9) 

Therefore the transformation (3.9) yields with a potential given by (3.7) exactly solvable 
Schrodinger equations. R2 and Q3 are polynomials of second and third degree, respec- 
tively, with arbitrary algebraic coefficients. 

The transformations (3.9) are of a relatively special form. To derive more general 
transformations or transformations of another form, other differential equations than 
those considered in (3.5) and (3.6) can be investigated. The calculations, however, 
become considerably more complicated. 

The potential (3.7) determines the Schrodinger equation and the transformation 
(3.9) determines the appropriate method of solution. To obtain the solution explicitly, 
the polynomials have to be substituted in (3.9) and the integration has to be performed. 
It is convenient to treat separate cases to perform the integration. 

3.2. Special transformations 

On account of the many algebraic parameters, the investigation of the general transfor- 
mation (3.9) and of the appropriate potential (3.7) is very complicated. Therefore, 
explicit polynomials are substituted for R2 and Q3 in (3.9) so that the integration can 
be performed. Since the transformations are expected to give new insight into the 
method described in section 2 ,  only those transformations are discussed, which are 
inverse hyperbolic functions of x, after having worked out the integration. 

These transformations can be put in the form 

(3.10) 

The special form of the argument of tanh-’ does not result in a loss of generality, but 
is convenient for the calculation of the potential (3.7). For example, f ( x )  stands for 
the following functions: 

(3.11) 

(3.12) 

f( x ) = ( ax + b ) 
f ( x )  = d [2&( ax2 + bx + c)’” + 2ax + bIh 

(3.13) 
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and 

a x + b + l  
f = ( ax + b - 1) * 

(3.14) 

The transformation (3.14) contains the transformation (2.4) as a special case. 
Another special case is given by 

( a  + b)x - b 
( a  - b)x+  b‘ 

g(x) = tanh-’ (3.15) 

This transformation produces as a potential a well with a pole. The function (3.13) 
contains the transformation (2.39), which is used for symmetric potentials. 

A special case of (3.12) is given by 

i 1-2x 
g(x)  = tanh-’ - 

2 [x ( l  -X ) ] ’ I 2 .  
(3.16) 

This transformation leads to a potential well with a barrier. 

4. Potential well with a barrier 

4.1. Solution of the Schrodinger equation 

In this section the Schrodinger equation is solved completely and exactly with a 
potential, which is a special case of (3.7). The eigenvalues are determined explicitly 
and an expression in closed form is derived for all eigenfunctions. The method of 
solution is similar to that described in section 2 .  As an example, the potential well 
with a barrier is chosen that is derived from the potential (3.7) by the transformation 
(3.161, 

tanh z 
cosh z 

G2 tanh’ z + Q1 - 

where 

dimensionless potential depth. 

The Gj are parameters, which can be chosen at will. Three potentials with different Gj 
are plotted in figure 1. 

The potential (4.1) is considered, because, on the one hand, it is simple so that the 
Schrodinger equation can be solved with a relatively small expense of calculation. On 
the other hand, it is not known that there are exact solutions of the Schrodinger 
equation with similar potentials. Furthermore, the potential (4.1) contains the solved 
symmetric well (2.2) for ijl = 0 as a special case. 

The dimensionless Schrodinger equation 

tanh z 
cosh z 

~Ztanh2z+q^, -  

is transformed by (3.16) 

i 1-2u z = tanh-’ - = sinh-’ i( 1 - 2 u )  
2 [ u ( l -  (4.3) 
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Figure 1. Potential well with a barrier. The three potentials, having different Gj values, are: 
_. 200 tanh z/cosh 2; . . . 43.69 tanh2(z +0.2) + 150[tanh(z + O.Z)/cosh(z +0.2)] - 
43.69; - - - -  74.91 tanh2(z+0.4)+ lOO[tanh(z+0.4)/cosh(z+0.4)]-74.91. 

into the hypergeometric differential equation. Its normal form is 

u2( 1 - u ) ~  7 + { [ E  + a  - v^( $2 + $0)] u2 - [ E  + a  - U*( G2 - figl + go)] U d2@ 
du 

(4.4) + L - l A (  
16 4 0  $2-i$I)}@(u) =o.  

This corresponds to the generally transformed differential equation (2.5). Thereby the 
real axis is mapped into a parallel of the imaginary axis through the point f: 

u =i(l + i  sinh z )  = f (  1 +ix)  

x = sinh z x E [-CO, +CO]. 

The differential equation (4.4) is transformed using a result in [4] 

(a( U) = U A I (  1 - u)A2y(u) 

A ,  =++4[$+6($2-i$,)]1’2 
A 2 = f + f [ f + v ^ ( $ 2 + i $ l ) ] 1 ’ 2  

whereby 

into the hypergeometric differential equation 

~ ( l  - U )  7 + [ - 2 ( A l  d2Y + A ~ ) u  +2A,] -+[-2AlA2- dY E +i+ a($&+ B o ) ] v ( ~ )  = 0. du du 

The transformation (4.6) prepares, like (2.8), the series expansion. Of course, the 
exponents are different on account of the different transformations (4.3) and (2.4). 
The differential equation (4.8) corresponds to (2.10). The solution of (4.8) is well known. 
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To determine the eigenvalues, the boundary conditions have to be applied to the 
solution of (4.8) later on. Therefore, the solution of (4.8) is expanded about U = 00. 

The general solution of (4.8) is given by [SI 
c p ( Z ) = U A l - 1 / 4 ( 1 - ~ ) h 2 - 1 / 4 [ ~ 1 ~ - a ~ ( a ,  ~ r - y + i ;  a - p + i ;  U-’) 

u = + ( l + i x )  x = sinh z Ixl>d3 

+c ,u-@F(p ,  p - y +  1; p - a  + 1; u - l ) ]  (4.9) 

whereby 

= A 1  + A 2 - 3 +  w 

(4.10) 

4.2. Eigenvalues 

The eigenvalues can be calculated from the general solution of the Schrodinger equation 
(4.9). They follow from the requirement that the solution (4.9) has to vanish at infinity 
and has to be finite in the whole range of definition. The boundary conditions cause 
one of the two linearly independent solutions of (4.9) to be resolved. The requirement 
of the finiteness in the range of definition results in the eigenvalue condition. Since 
the coefficients in the formula of the analytic continuation of the hypergeometric series 
are known, the eigenvalue condition can be given explicitly. Moreover, it can easily 
be solved for the eigenvalue. 

At first the boundary condition at z = --CO (x=--CO) is applied. The series in (4.9) 
take on the value one at the centre of the expansion. The complex powers of U have 
to be calculated only to derive the asymptotic representation 

cp(z) +, c , / “ - J [ t ( i 2 + ~ 0 ) - ~ ~  + c , J ~ j J [ t ( ~ 2 + ~ 0 ) - ~ ~  

(4.11) 
z+--CO x+,--CO. 

The second term diverges so that 

c, = 0. (4.12) 

As in the general case (2.26), one of the linearly independent solutions in (4.9) is 
resolved. 

The range of definition of the series in (4.9) also contains Z=+-CO in addition to 
z= --CO. Therefore, the second boundary condition at z= +a is automatically satisfied, 
if (4.12) holds. 

Now the finiteness of the solution (4.9) in the whole range of definition is required. 
The series in (4.9) are convergent, if 1x1 > 8. To study the wavefunction in the interval 
x E [-a, a], the remaining series in (4.9) has to be continued to this interval [ 5 ] .  
The analytic continuation is 

cp(z) = ( - l ) * ~ ~ u * 1 - ” ~ ( l -  u ) ~ ~ - ” ~ [ A F ( ~ ,  p ;  y ;  U) 

-Bu’-YF(a - y +  1, p - y +  1; 2 -  y ;  U)] 

u = f ( l + i x )  x = sinh z x € ]-a, d[ 
(4.13) 
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whereby 

(4.14) 

(4.15) 

Equation (4.13) corresponds to (2.31). A and B are the coefficients in the formula of 
the analytic continuation. The wavefunction (4.13) is convergent in the open interval ]-a, a[. At the points x = *a the series diverge. In order that cp is finite at these 
points, A and B have to vanish or the series have to terminate. The discussion of all 
possibilities results in the statement that it is sufficient, if either A or B vanishes. In 
this case the remaining series in (4.13) terminates so that the wavefunction is finite. A 
or B can vanish only if an argument of a r function in the denominator is equal to a 
negative integer. All possibilities result in the same eigenvalue condition 

l - p = - n  n E N o .  (4.16) 

If p is substituted by the help of (4.10), (4.16) can be solved for the eigenvalue 

E ,  = v^( i2+i0)-[n+i-{~[(~+v^q*2)2+U*2$:]1’2+,(~+ U*42)}1’2D2. (4.17) 

This is remarkable, since it is not possible for comparatively simple potentials (e.g., a 
square well). 

From (4.16) and (4.17) it also follows that the spectrum is finite. The upper bound 
of the quantum number n is given by 

(4.18) n s {$[(a+ v^ij2)2+ v^’4“’’++(~+ v^i2)}’/2-i. 

4.3. Eigenfunctions 

By the help of the eigenvalues (4.17) the eigenfunctions can be determined from the 
general solution of the Schrodinger equation (4.9). To do this the eigenvalue condition 
is substituted in the general solution. The result is that the hypergeometric series 
terminates. The eigenfunctions become Jacobi polynomials multiplied by powers of U 

in the whole range of definition, that is to say they are given in closed form. 
The eigenfunctions follow from (4.9) and (4.12) 

p,( Z )  = C ~ U ” ’ - ’ ’ ~ (  1 - u ) ~ Z - ” ~ U - ~ F (  (Y, (Y - Y + 1 ;  (Y - p + 1; U - ’ ) .  (4.19) 

The hypergeometric series can be transformed into [5] 

cp,,(z) = C ~ U ~ ~ - ” ~ (  1 - u ) ” ~ - ’ ’ ~ u ~ - ~ (  U - l)’-“-@F( 1 - p, y - p ;  a - p + 1 ;  U - ’ ) .  (4.20) 

By the help of the eigenvalue condition (4.16), the first parameter of the series (4.20) 
becomes a negative integer. Therefore the series terminates and turns into a polynomial 
of nth degree. 

Completely analogously the expression 

cp,(z) = - ( - 1 ) ~ c l U A l - l / 4 ( 1  - U ) % - 1 / 4 ~ U * - ~  ( 1 - U )  F (  1 - p, 1 - (Y ; 2 - 7 ;  U )  (4.21) 

follows from (4.13). Since this series also terminates, the division of the intervals in 
(4.9) and (4.13) is superfluous. Therefore (4.20) and (4.21) have to be identical. This 
can be proved by substituting the series representation of the hypergeometric functions 
in these expressions. 
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The terminating hypergeometric series can be expressed by Jacobi polynomials. By 
the help of (4.10) and (4.16), the eigenfunctions are of the form 

4hl+2h2+1 n!  
(2h,+2h2-n-2) ,  cP?I(z) = c1(-1) 

U-A,+3/4 (1 - u ) - A 2 + ~ / 4 ~ ~ - 2 A l + l ; - 2 A ~ + l )  (-i sinh z )  (4.22) 

u = 4( 1 + i  sinh z ) .  

It is obvious that the expression (4.22) is complex. It can be proved, however, that the 
part which depends on the spatial coordinate, is real. A representation, which expresses 
this property, is not as compact as (4.22). 

4.4. Comparison with the simple potential well 

The simple symmetric well (2.2) is a special case of the potential well with a barrier 
(4.1). It is interesting to compare the discrete spectra of both potentials. 

From (4.17) it follows that the spectra of the well with a barrier and of the simple 
symmetric well are of the same mathematical form; 

E,=a, - (n+a, )2 .  (4.23) 

The aj are functions of the potential parameters. Since (4.23) holds for both potentials, 
there exists for each well with a barrier exactly one simple symmetric well, which has 
exactly the same spectrum. The number of eigenvalues is the same and their absolute 
values are identical. It is remarkable that this result is independent of the number of 
eigenvalues. The potential parameters q, of the simple well can be calculated from the 
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Figure 2. Eigenvalues of the potential well with a barrier. The four potentials are: 
- 99.88 tanh2(r+0.9)-99.88; a . * . 200tanh z/cosh r; ---- 43.69 tanh2(r+0.2)+ 
150[tanh(z+0.2)/cosh(r+0.2)]-43.69; - .  - .  - 74.91 tanh2(z+0.4)+ 100[tanh(z+0.4)/ 
cosh(z+0.4)]-74.91. 
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parameters of the well with a barrier {j. They are connected by 
* 2 " 2  1 / 2  

vq, = t { [ ( i+  Gi j2) ,+  v q , ]  + Gij* -i} 

v q o = u * q * o - K [ ( a + G q * 2 ) 2 + v  411 vq2- i ) .  

vq, = 0 (4.24) 
1 2 1 2  I / , -  A A  

Conversely there exists to each simple well a whole family of wells with a barrier, 
which have the same spectrum. This assignment is not single valued, because the well 
with a barrier provides three potential parameters to express the two parameters aj in 
(4.23). 

In figure 2 four potentials, which have the same eigenvalue spectrum, are plotted. 
The equivalence concerns the eigenvalues. The eigenfunctions of the potentials are, 
of course, different. 

5. Conclusion 

With the method described above, it is possible to solve the Schrodinger equation with 
the potential (3.7) exactly and analytically. From this it follows that all the calculations 
have to be worked out only once, This results in a great reduction of time compared 
with the numerical solution of the Schrodinger equation, especially if the potential 
has many eigenvalues or if the potential parameters are varied. In section 4.4 the 
equivalence of the spectra of two different potentials was proven. Such an assertion 
is completely impossible with numerical methods. 

The well with a barrier is one of the simplest potentials that can be deduced from 
(3.7). The appropriate transformation contains only four arbitrary parameters. The 
most general transformation (3.9) has eight algebraic parameters. From the transforma- 
tions, investigated up to now, it can be concluded that the complexity of the potentials 
increase with the number of parameters of the transformation. There is hope that the 
double-well potentials can also be solved by (3.9). A double well is present if the 
derivative of the potential has three finite real zeros. In fact some transformations 
produce equations of third degree for this expression. Since the parameters of the 
equation define the extrema of the potential as well as the range of definition, until 
now it could not be proved that it is possible to place all the zeros in the range of 
definition. Exact solutions of double-well potentials are particularly interesting. Com- 
pletely new methods could be deduced from them, for example, for almost degenerate 
states. 

If the degrees of the polynomials in (3.9) are fixed, the integration results in 23 
transformations, which are similarly constructed like (3.10) to (3.14). The number of 
transformations can be increased, if the requirement (3.5) is dropped and if other 
differential equations are allowed. In particular, the Schrodinger equations derived by 
(3.9) can be used as solved differential equations in (3.5). Then new transformations 
can be derived. If this method is used several times, the number of transformations 
and that of the solved Schrodinger equations might become unlimited. 

Finally, (3.7) contains potentials, which can be solved by the general method 
described in sections 2. The eigenvalues of these potentials are solutions of the general 
eigenvalue condition (2.35). On account of the generality of (2.35) and of the same 
form for different potentials it should be expected that these solutions can be gen- 
eralised, so that (2.35) can be solved for the general potential (2.1). 
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